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a b s t r a c t 

Heterogeneity of multi-modal data is the key challenge for multimedia cross-modal retrieval. To solve 

this challenge, many approaches have been developed. As the mainstream, subspace learning based ap- 

proaches focus on learning a latent shared subspace to measure similarities between cross-modal data, 

and have shown their remarkable performance in practical cross-modal retrieval tasks. However, most of 

the existing approaches are intrinsically identified with feature dimension reduction on different modal- 

ities in a shared subspace, unable to fundamentally resolve the heterogeneity issue well; therefore they 

often can not obtain satisfactory results as expected. As claimed in Hilbert space theory, different Hilbert 

spaces with the same dimension are isomorphic. Based on this premise, isomorphic mapping subspaces 

can be considered as a single space shared by multi-modal data. To this end, we in this paper propose 

a correlation-based cross-modal subspace learning model via kernel dependence maximization (KDM). 

Unlike most of the existing correlation-based subspace learning methods, the proposed KDM learns sub- 

space representation for each modality by maximizing the kernel dependence (correlation) instead of 

directly maximizing the feature correlations between multi-modal data. Specifically, we first map multi- 

modal data into different Hilbert spaces but with the same dimension individually, then we calculate 

kernel matrix in each Hilbert space and measure the correlations between multi-modalities based on 

kernels. Experimental results have shown the effectiveness and competitiveness of the proposed KDM 

against the compared classic subspace learning approaches. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, multi-modal multimedia data are omnipresent on

he Internet and many social websites like YouTube, Facebook,

lickr and so on. In multimedia domain, multi-modal data are re-

erred to as various types of media data such as audio clips, videos,

mages and texts, etc. While multi-modal data are heterogeneous,

hey can provide complementary information about the same se-

antic objects, which is helpful for people to comprehensively un-

erstand the semantic objects. Therefore, numerous efforts have

een made to study cross-modal retrieval. The goal of cross-modal

etrieval is to retrieve the relevant data objects from one modality

iven one data object from another modality as query. 

However, the ‘content-gap’ issue, referring to that the hetero-

eneity from multi-modal multimedia data makes the similarity
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etween them unable to be directly measured, is still a big chal-

enge for cross-modal retrieval. To address this challenge, two

trategies are commonly adopted. One is to directly calculate cross-

odal similarities based on the known data relationships by learn-

ng cross-modal similarity measures, without obtaining an explicit

ommon subspace that is shared with multi-modal data [18,19,32] .

he other is to learn a latent common subspace where cross-

odal data similarities can be effectively executed, which is gener-

lly termed as common subspace learning. Currently, common sub-

pace learning is one mainstream for cross-modal retrieval. Repre-

entative approaches characterized with this type include unsuper-

ised ones [1,30,34] , supervised ones [28,33] , sparsity-based ones

4,13] , deep neural network based ones [2,21,41] , etc. Fig. 1 shows

he illustration of cross-modal subspace learning. 

Despite the heterogeneity, multi-modal multimedia data share

ith the same semantics since they intrinsically describe the same

emantic object. Naturally, there may exist some inherent correla-

ions among them, based on which common subspace represen-

ations can be learnt. Accordingly, correlation-based cross-modal

ubspace learning has been the research focus for cross-modal re-
endence maximization for cross-modal retrieval, Neurocomputing 
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Fig. 1. Illustration of cross-modal subspace learning (Take image and text two modality as an example). 
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trieval. Nevertheless, it is not trivial to directly capture correla-

tions across modalities due to the fact that data from different

modalities may have very different statistical properties. As stated

in statistics, canonical correlation analysis (CCA) [16] , Kullback–

Leibler (KL) divergence [6] , mutual information [35] , Hilbert–

Schmidt Independence Criterion (HSIC) [7,12,17] ,and son on, are

classical techniques for measuring correlation (dependence) of two

random variables. These techniques provide the theoretical founda-

tion for correlation-based learning and have been used for various

learning tasks such as dimensionality reduction [35,47] , classifica-

tion [33,48] , clustering [3] , dictionary learning [9,10] , multi-modal

retrieval [27] , etc. As one of the fundamental statistical correlation

analysis approaches, CCA has attracted extensive attention during

the past decades. Taking data from two heterogeneous modalities

as two group variables, CCA is used to learn a latent common sub-

space by maximizing the pairwise correlations between them for

cross-modal retrieval. Due to its flexibility, a great many of the

CCA-like methods are proposed successively [2,14,27] . Much more

CCA-based variants for common subspace learning can be found in

[24] . 

As the mainstream, common subspace learning approaches aim

at learning isomorphic subspace representations for each modality

to measure the similarities between cross-modal data, and have

shown the great effectiveness to cross-modal retrieval tasks in

the last decades. However, most of them are intrinsically identi-

fied with feature dimension reduction to obtain subspaces with

the same dimensions, without specifying whether the subspaces

satisfy the isomorphic mapping relationship strictly. Actually, iso-

morphic mapping subspaces can be considered as the single space

shared by multi-modal data, in which the modality similarities are

able to be directly measured. To this end, in this paper we seek for

such subspace for each modality via kernel dependence maximiza-

tion based on the Hilbert space theory. Specifically, we learn differ-

ent mappings which can transform multi- modal data from mul-

tiple heterogeneous spaces to multiple isomorphic Hilbert spaces

with the same dimensions, individually. Then, we calculate kernel

matrix of each modality in each Hilbert space and measure the

correlations between the calculated kernel matrices. The experi-

mental results on two benchmark data sets demonstrate the ef-

fectiveness and superiority of our proposed model, compared with

the other state-of-the-art subspace learning based approaches. 

The main contributions of our work can be summarized as the

following: 

• Unlike most subspace learning based methods that directly

project multi-modality data into a latent common subspace

to measure similarities between multi-modality samples, the

proposed kernel dependence maximization model, to learn

subspace representations for cross-modal retrieval, projects

multi-modality data into multiple different Hilbert spaces with

the same dimensions where cross-modal similarities can be
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
performed across different Hilbert spaces since they are mu-

tually isomorphic. 

• The kernel matrix essentially measures the similarities among

samples from each modality, therefore intra-modality similarity

can be well preserved. Besides, for each modality data, the con-

sistency between feature-based similarity and semantic-based

similarity can also be preserved. 

• To solve the optimization problem, an efficiently iterative algo-

rithm based on the alternating strategy is designed with its rig-

orous convergence analysis theoretically, which also has rapid

convergence speed within about ten iterations on the tested

datasets. 

The remainder of the paper is structured as follows. In

ection 2 , we review some related works on cross-modal sub-

pace learning. In Section 3 , some notations used throughout the

aper and Hilbert-Schmidt Independence Criteria (HSIC) are in-

roduced. Section 4 provides the proposed cross-modal subspace

earning model via kernel dependence maximization approach in

etails, including the designed optimizing algorithm and conver-

ence analysis with rigorous theoretical proof. The experimental

esults to show the performance of the proposed model are re-

orted in Sections 5 and Section 6 concludes the paper. 

. Related work 

In the past decades, there have been many approaches devel-

ped for the cross-modal retrieval tasks such as probabilistic mod-

ls based ones [32] , metric learning ones [18,19] , subspace learning

ased one [15,37] , etc. Thereinto, subspace learning based ones are

esigned to learn a latent common subspace for directly measuring

he similarity between different modalities of data, currently domi-

ating the landscape in cross-modal retrieval. This type of methods

an be categorized into three paradigms i.e. unsupervised, semi-

upervised and supervised concerning how to exploit the domain

nowledge (e.g. pairwise information, label information, etc) in the

raining phase. 

Unsupervised subspace learning based algorithms utilize the

orrespondence information of one-to-one mapping multi-modal

ata to learn common subspace representations for each modality,

hen calculate the pair-wise closeness between modalities. Canon-

cal Correlation Analysis (CCA), Partial Least Squares (PLS) [30] and

ilinear Model (BLM) [34] are the most representative baseline un-

upervised ones used for cross-modal retrieval. Although unsuper-

ised ones have been effectively applied to cross-model retrieval,

he retrieval performance is not as pleasurable as expected since

hey do not make use of the discriminant information encoded

n the semantic labels. To obtain a more discriminative common

ubspace where different classes can be well separated as much

s possible, supervised methods exploit semantic label informa-

ion for subspace learning. Taking the semantic label as the third
endence maximization for cross-modal retrieval, Neurocomputing 
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eature view, Gong et al [11] present a three-view CCA (CCA-3V)

o learn more discriminative subspace representations for cross-

odal retrieval. Extending CCA to perform multi-label cross-modal

etrieval, Ranjan et al [27] introduce multi-label CCA (ml-CCA) by

ncorporating multi-label annotations as high level semantic infor-

ation. In [26] , Semantic Matching (SM) and Semantic Correlation

atching (SCM) are proposed to learn semantic subspace repre-

entations for each modality by utilizing logistic regression as the

lassification way. Simultaneously, SCM has demonstrated the suc-

ess in combining CCA with semantic label information. Moreover,

eneralized Multiview Analysis (GMA) in [31] is another super-

ised extended version of CCA for cross-modal retrieval. Compared

ith unsupervised ones, supervised methods can learn a more dis-

riminative subspace owing to the discriminative information im-

lied in the labels. While for semi-supervised methods, part of the

raining multi-modal data are labeled with semantic class labels,

nd part are without labels. Typical cross-modal semi-supervised

pproaches include [25,37,44] , etc. Specifically, using both labeled

nd unlabeled data to build the multi-modal graph for preserving

wo types of similarity relationship i.e. intra-modality and inter-

odality, Wang et al propose the Joint Feature Selection and Sub-

pace learning (JFSSL) for cross-modal retrieval [37] . Benefiting

rom dictionary learning, Xu et al propose a semi-supervised cou-

led dictionary learning approach jointly using both the paired and

npaired samples to learn sparse subspace representations for the

ulti-modal data [44] . To execute the matching task, they apply

he coupled feature mapping technique in [38] to map the learned

parse representations for each modality into the semantic space.

aking only one graph to jointly model all labeled and unlabeled

ulti-media data, Peng et al propose the semi-supervised cross-

edia feature learning algorithm with unified patch graph regu-

arization ( S 2 UPG ) [25] . 

Beyond that, Deep neural network (DNN), as one popular non-

inear relationship learning means, has shown its remarkable abil-

ty in various multimedia applications [23,45,46] and has been

radually exploited for common subspace learning. Inspired by

NN, Ngiam et al extend restricted Boltzmann machine(RBM) to

he bimodal deep autoencoder for common space learning [21] . In

he bimodal deep autoencoder, inputs of two different modal data

ass through a shared code layer to learn the cross-media corre-

ations and simultaneously to preserve the reconstruction infor-

ation. Driven by the overwhelming power from deep learning,

 variety of deep architectures are developed and perform well

n cross-media retrieval [8,29] . Incorporating DNN into CCA, An-

rew et al propose the deep canonical correlation analysis (DCCA)

2] for learning the complex non-linear transformations for two

edia types. In fact, DCCA is a non-linear extension of CCA. Mo-

ivated by CCA and reconstruction-based autoencoders, Wang et al

ropose deep canonically correlated autoencoders (DCCAE), which

s essentially identified with an autoencoder regularized DCCA [41] .

o summarize, DNN-based approaches are deep extensions of CCA

n neural networks. Though such type of methods have demon-

trated their effectiveness, they are often confronted with the dif-

culty of high computational complexity since tuning parameters

nvolved in neural network requires much effort s in the training

hase. Much more algorithms about subspace learning for cross-

odal retrieval can refer to the surveys and references therein

24,39] . 

This paper is built upon our preliminary conference version

43] . (1) Different from the conference version, we in current ver-

ion not only exploit the pairwise relationship between multi-

odal data but also incorporate the shared semantic label infor-

ation into subspace learning. By maximizing the dependence be-

ween multiple modalities as well as the dependence between

ach modality and the shared semantic label by measuring kernel

imilarity jointly, more discriminative subspace representations can
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
e learnt for cross-modal retrieval. Simultaneously, the consistency

etween feature-based similarity and semantic-based similarity for

amples from each modality, and the sample similarity consistency

etween modalities can be well preserved. (2) We extend the pre-

ious objective function for two views to a supervised multi-view

ersion, which can be also used for multi-modal retrieval. (3) We

heoretically provide rigorous convergence analysis on the optimiz-

ng algorithm. 

. Preliminaries 

.1. Notations 

To begin with, we introduce some notations adopted in the pa-

er. For any matrix A ∈ R 

n ×m , A 

· · i and A 

: j are used to represent

ts i -th row and j -th column, respectively. ‖ A ‖ 2, 1 is the � 2, 1 -norm

f A , defined as ‖ A ‖ 2 , 1 = 

n ∑ 

i =1 

∥∥A 

··i ∥∥
2 
. ‖ A ‖ HS is the Hilbert - Schmidt

orm of A , defined as ‖ A ‖ HS = 

√ ∑ 

i, j 

a 2 
i j 

. Besides, tr ( · ) represents

he trace operator, � the tensor product and I an identity ma-

rix with an appropriate size. Throughout the paper, matrices and

ectors are represented in uppercase and lowercase letters respec-

ively, and both are highlighted in bold. Variables are represented

y italic lowercase letters. 

.2. Hilbert - Schmidt independence criteria 

Let C xy be the cross-covariance function between x and y , ϕ( x )

nd φ( y ) two mapping functions with ϕ(x ) : x ∈ X → R and φ(y ) :

 ∈ Y → R , G and H two RKHSs in X and Y . The associated positive

efinite kernels k x and k y is defined as k x (x, x T ) = < �(x ) , �(x ) > G 
nd k y (y, y T ) = < �(y ) , �(y ) > H 

. Then cross-covariance C xy is de-

ned as: 

 xy = E xy [ ( ϕ ( x ) − u x ) � ( φ( y ) − u y ) ] , (1) 

here u x and u y is the expectation of ϕ( x ) and φ( y ) respectively,

.e. u x = E ( ϕ ( x ) ) and u y = E ( φ( y ) ) . 

Given two independent RKHSs G, H and the joint distribution

 xy , HSIC is the Hilbert - Schmidt norm of C xy , defined as: 

SIC ( p xy , G, H ) := ‖ 

C xy ‖ 

2 
HS (2) 

n practical applications, an empirical estimate formulation of HSIC

s commonly used. Given N finite number of data samples Z :=
 (x 1 , y 1 ) , . . . , (x N , y N ) } , the empirical expression of HSIC is formu-

ated as: 

SIC ( Z, F , G ) = ( n − 1 ) 
−2 tr ( K 1 H K 2 H ) , (3) 

here K 1 and K 2 are two Gram matrices with k 1 ,i j = k 1 (x i , x j ) and

 2 ,i j = k 2 (y i , y j ) (i, j = 1 , . . . , n ) . H = I − 1 
n 1 n 1 

T 
n , is a centering ma-

rix, and 1 n ∈ R 

n is a full-one column vector. 

More details about HSIC can refer to literatures [7,17] . 

. Cross-modal subspace learning model by kernel dependence 

aximization 

.1. Formulation 

Assume that there are M types of multi-modal media train-

ng data with n samples, denoted as X v = [ x i 
1 
, . . . , x i v ] ∈ R 

n ×d v (i =
 , . . . , n ; v = 1 , . . . , M) , where d v is the dimension of each modality

nd x i v ∈ R 

d v ×1 . The shared semantic label matrix Y ∈ R 

n ×c is repre-

ented as Y = [ y 1 , . . . , y n ] 
T , where y i ∈ R 

c×1 and c is the number of

he possible semantic labels. If x i v belongs to the j -th ( j = 1 , . . . , c)
endence maximization for cross-modal retrieval, Neurocomputing 
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Fig. 2. Framework of the proposed model. 
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class, we have y i j = 1 , otherwise y i j = 0 , where y ij is the j -th ele-

ment of y i . The goal of this paper is to learn isometric represen-

tations for heterogeneous multi-modal data by maximizing kernel

dependence instead of feature correlations of each modality di-

rectly. As a kernel itself is in essence a similarity function, each

kernel matrix measures the similarity relationship among sam-

ples in each modality, which is called the intra-modality similar-

ity. Therefore, our proposed model can simultaneously preserve the

intra-modality similarity relationship. 

4.2. Model 

First, M heterogeneous multi-modal data are mapped into M

different Hilbert spaces H v under the mapping functions ϕv ( · ),

v = 1 , . . . , M. According to Hilbert space theory, different Hilbert

spaces with the same dimensions are isomorphic, by which we

can perform cross-modal retrieval. The new representation z i v for

each sample x i v (i = 1 , . . . , n ) from modality in H v is z i v = ϕ v (x i v ) . In

each Hilbert space, we calculate the kernel matrix K v by K v (i, j) =〈 
z i v , z 

j 
v 

〉 
, i, j = 1 , . . . , n . Then we measure the correlations between

multi-modal data based on the kernel matrix by similarity mea-

sures. The framework of the model is shown in Fig. 2 . 

For simplicity, we adopt linear kernel as the kernel measure,

kernel matrices of multi-modal data K X v are denoted as K X v =〈 Z v , Z v 〉 = Z v Z 

T 
v , where z i v = ϕ v 

(
x i v 

)
= x i v P v ∈ R d v ×d (v = 1 , . . . , M) ,

and P v are the projection matrices. The kernel matrix of the

shared semantic label is denoted as K Y = 〈 Y , Y 〉 = YY 

T . The simi-

larity between two kernel matrices can be calculated using metric

measures such as kernel alignment, Euclidean distance, Kullback -

Leibler (KL) divergence, etc. Here, we adopt the Hilbert - Schmidt In-

dependence Criteria (HSIC). The formulation of the proposed model

is: 

max 
P v 

M ∑ 

u =1 , v =1 
u � = v 

tr ( H K X u H K X v ) + 

M ∑ 

v =1 

tr ( H K X v H K Y ) −
M ∑ 

v =1 

λv ‖ 

P v ‖ 2 , 1 

s.t. P 

T 
v P v = I , (4)

where the first term is to measure the dependence between multi-

ple modality data. The second term is to measure the dependence

between each modality and the shared semantic label, which

can also preserve the consistency between feature-similarity and

semantic-similarity for each sample from each modality. The con-

straint on P v (v = 1 , . . . , M) plays the role of removing redundancy

or irrelevant features of the original data. As demonstrated in lit-

eratures [22,40] , � 2, 1 -based learning models have capabilities of
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
parsity, feature selection and robustness to noise. Therefore, we

mpose the � 2, 1 -norm constraint on the projection matrix to ex-

ect more discriminative subspace representations for each modal-

ty by removing the possible redundant and noisy features con-

ained in the high-dimensional modality data. λv ( λv > 0) is the reg-

larization parameter. 

Without loss of generality, in the following we mainly consider

wo types of multi-modal multi-media data e.g. image and text.

pecifically, the formulation in Eq. (4) is reduced to: 

ax 
P 1 , P 2 

t r ( H K X 1 H K X 2 ) + t r ( H K X 1 H K Y ) + t r ( H K X 2 H K 

Y ) − λ1 ‖ 

P 1 ‖ 2 , 1 

−λ2 ‖ 

P 2 ‖ 2 , 1 

.t. P 

T 
1 P 1 = I , P 

T 
2 P 2 = I , (5)

here K X 1 
= 〈 Z 1 , Z 1 〉 = X 1 P 1 P 

T 
1 

X 

T 
1 

and K X 2 
= 〈 Z 2 , Z 2 〉 = X 2 P 2 P 

T 
2 

X 

T 
2 

. 

.3. Optimization 

By virtue of ‖ A ‖ 2 , 1 = tr 
(
A 

T DA 

)
, where D = diag 

(
1 ‖ A ··i ‖ 2 

)
,

q. (5) can be rewritten as: 

ax 
P 1 , P 2 

t r ( H K X 1 H K X 2 ) + t r ( H K X 1 H K 

Y ) 

+ t r ( H K X 2 H K 

Y ) − λ1 t r 
(
P 

T 
1 D 1 P 1 

)
− λ2 t r 

(
P 

T 
2 D 2 P 2 

)
.t. P 

T 
1 P 1 = I , P 

T 
2 P 2 = I , (6)

here D v = diag 

( 

1 ∥∥∥P 
··i 
v 

∥∥∥
2 

) 

and P 

··i 
v is the i -th row of P v (v = 1 , 2) . 

To optimize the objective function in Eq. (6) (or Eq. (5) ), we em-

loy the alternative optimization strategy. Specifically, according to

he alternative optimization rules, the original optimization prob-

em can be decomposed into the following two sub-maximization

nes: 

.3.1. Solve P 1 by fixing P 2 

Fixing P 2 , we can obtain the following equivalent optimization

roblem of Eq. (6) : 

max 
P 1 

t r ( H K X 1 H K X 2 ) + t r ( H K X 1 H K Y ) − λ1 t r 
(
P 

T 
1 D 1 P 1 

)
 max 

P 1 
tr 

(
P 

T 
1 B 1 P 1 

)
s.t. P 

T 
1 P 1 = I , 

(7)

here B 1 = X 

T 
1 

H X 2 P 2 P 

T 
2 

X 

T 
2 

H X 1 + X 

T 
1 

HY Y 

T H X 1 − λ1 D 1 . Performing

igenvalue decomposition on B 1 , we can obtain P 1 , which here

onsists of the first d eigenvectors corresponding to the d largest

igenvalues of B . 
endence maximization for cross-modal retrieval, Neurocomputing 
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.3.2. Solve P 2 by fixing P 1 

Likewise, fixing P 1 we can obtain the following equivalent opti-

ization problem: 

max 
P 2 

t r ( H K X 1 H K X 2 ) + t r 
(
H K X 2 H K Y 

)
− λ2 t r 

(
P 

T 
2 D 2 P 2 

)
 max 

P 2 
tr 

(
P 

T 
2 B 2 P 2 

)
s.t. P 

T 
2 P 2 = I , 

(8) 

here B 2 = X 

T 
2 

H X 1 P 1 P 

T 
1 

X 

T 
1 

H X 2 + X 

T 
2 

HY Y 

T H X 2 − λ2 D 2 . Likewise,

erforming eigenvalue decomposition on B 2 , we can obtain P 2 ,

onsisting of the first d eigenvectors corresponding to the d largest

igenvalues of B 2 . 

To better understand the procedure for solving the proposed

odel, we summarize in detail the solver for solving the optimiza-

ion problem in Eq. (5) as Algorithm 1 . 

lgorithm 1 : Cross-modal subspace learning via Kernel Depen-

ence Maximization (KDM). 

nput: 

Multi-modal data X v ∈ R 

n ×d v , v = 1 , 2 ;the regularization param-

eters λ1 and λ2 ; 

utput: 

The projection matrices P v , v = 1 , 2 ; 

1: Initializing: Initialize P 1 and P 2 randomly, and t = 0 ; 

2: while the objective function not converge do 

3: Update D 1 and D 2 : D 

( t ) 
1 

= diag 

( 

1 

2 

∥∥∥P 
··i ( t ) 
1 

∥∥∥
2 

) 

, D 

( t ) 
2 

=

diag 

( 

1 

2 

∥∥∥P 
··i ( t ) 
2 

∥∥∥
2 

) 

; 

4: Update P 1 : obtain P 

(t+1) 
1 

by performing eigen-decomposition

on B 1 = X 

T 
1 

H X 2 P 

( t ) 
2 

(
P 

( t ) 
2 

)T 

X 

T 
2 

H X 1 + X 

T 
1 

HY Y 

T H X 1 − λ1 D 

( t ) 
1 

.

The d eigenvectors corresponding to the first largest d 

eigenvalues of B 1 compose P 1 ; 

5: Update P 2 : obtain P 

(t+1) 
2 

by performing eigen-decomposition

on B 2 = X 

T 
2 

H X 1 P 

( t ) 
1 

(
P 

( t ) 
1 

)T 

X 

T 
1 

H X 2 + X 

T 
2 

HY Y 

T H X 2 − λ2 D 

( t ) 
2 

.

The d eigenvectors corresponding to the first largest d 

eigenvalues of B 2 compose P 2 ; 

6: t = t + 1 ; 

7: end while 

.4. Convergence analysis 

The convergence of the proposed KDM under the iterative opti-

ization algorithm in Algorithm 1 can be summarized by the fol-

owing Theorem 1 . 

heorem 1. Under the iterative optimizing rules in Algorithm 1 , the

bjective function defined by Eq. (5) is increasing monotonically, and

nally it converges to the global maximum. 

To prove Theorem 1 , we need to introduce the following

emma 1 . For details about Lemma 1 , please refer to the literature

22] . 

emma 1. For any nonzero f ∈ R 

n and g ∈ R 

n , the following equality

olds: 

 

f ‖ 2 −
‖ 

f ‖ 

2 
2 

2 ‖ 

g ‖ 2 

≤ ‖ 

g ‖ 2 −
‖ 

g ‖ 

2 
2 

2 ‖ 

g ‖ 2 

(9) 

Resorting to the above Lemma 1 , the detailed proof of

heorem 1 is provided below. 
Please cite this article as: M. Xu et al., Subspace learning by kernel dep
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roof. To prove Theorem 1 can be divided into two processes i.e.

a) Solve P 1 by fixing P 2 ; (b) Solve P 2 by fixing P 2 . Obviously, these

wo processes are symmetrical, therefore we only need to prove

ne of them. Below we will give the detailed proof of process (a). 

As shown in the previous section, with P 2 fixed, the obtained

 1 by solving the optimization problem in Eq. (5) is the solution

o the following problem: 

max 
P 1 

t r ( H K X 1 H K X 2 ) + t r ( H K X 1 H K Y ) − λ1 t r 
(
P 

T 
1 D 1 P 1 

)
s.t. P 

T 
1 P 1 = I . 

(10) 

efine J(P 1 ) = t r 
(
H K X 1 

H K X 2 

)
+ t r 

(
H K X 1 

H K Y 

)
and let O denote the

bjective function in Eq. (10) , then O (P 1 ) = J ( P 1 ) − λ1 tr 
(
P 

T 
1 

D 1 P 1 

)
.

n the t -th iteration, there goes: 

 

( t+1 ) 
1 

= arg max 
(
J ( P 1 ) − λ1 tr 

(
P 

T 
1 D 

( t ) 
1 

P 1 

))
⇒ J 

(
P 

( t+1 ) 
1 

)
− λ1 tr 

((
P 

( t+1 ) 
1 

)T 
D 

( t ) 
1 

P 

( t+1 ) 
1 

)
≥ J 

(
P 

( t ) 
1 

)
− λ1 tr 

((
P 

( t ) 
1 

)T 
D 

( t ) 
1 

P 

( t ) 
1 

)

⇒ J 
(
P 

( t+1 ) 
1 

)
− λ1 

d ∑ 

i =1 

∥∥∥P 

··i ( t+1 ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

≥ J 
(
P 

( t ) 
1 

)
− λ1 

d ∑ 

i =1 

∥∥∥P 

··i ( t ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

⇒ J 
(
P 

( t+1 ) 
1 

)
− λ1 

∥∥P 

( t+1 ) 
1 

∥∥
2 , 1 

+ λ1 

⎛ 

⎜ ⎝ 

∥∥P 

( t+1 ) 
1 

∥∥
2 , 1 

−
d ∑ 

i =1 

∥∥∥P 

··i ( t+1 ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

⎞ 

⎟ ⎠ 

≥ J 
(
P 

( t ) 
1 

)
− λ1 

∥∥P 

( t ) 
1 

∥∥
2 , 1 

+ λ1 

⎛ 

⎜ ⎝ 

∥∥P 

( t ) 
1 

∥∥
2 , 1 

−
d ∑ 

i =1 

∥∥∥P 

··i ( t ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

⎞ 

⎟ ⎠ 

(11) 

ccording to Lemma 1 , we have: 

P 

( t+1 ) 
1 

∥∥
2 , 1 

−
d ∑ 

i =1 

∥∥∥P 

··i ( t+1 ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

≤
∥∥P 

( t ) 
1 

∥∥
2 , 1 

−
d ∑ 

i =1 

∥∥∥P 

··i ( t ) 
1 

∥∥∥2 

2 

2 

∥∥∥P 

··i ( t ) 
1 

∥∥∥
2 

(12) 

ombining Eq. (11) with Eq. (12) , we can obtain: 

J 
(
P 

( t+1 ) 
1 

)
− λ1 

∥∥P 

( t+1 ) 
1 

∥∥
2 , 1 

≥ J 
(
P 

( t ) 
1 

)
− λ1 

∥∥P 

( t ) 
1 

∥∥
2 , 1 

 O 

(
P 

( t+1 ) 
1 

)
≥ O 

(
P 

( t ) 
1 

) (13) 

ikewise, when updating P 2 with P 1 fixed, we can also prove that

 

(
P 

( t+1 ) 
2 

)
≥ O 

(
P 

( t ) 
2 

)
. Further, we can reach O 

(
P 

( t+1 ) 
1 

, P 

( t+1 ) 
2 

)
≥

 

(
P 

( t ) 
1 

, P 

( t ) 
2 

)
. 

From all the above, the objective function in Eq. (5) under the

terative updating rules designed in Algorithm 1 is non-decreasing.

eanwhile, it is noted that the optimization problem itself is con-

ex. According to the literature [36] , the objective function will fi-

ally converge to its global optimal solution. 

This completes the proof of Theorem 1 . �

.5. Computational complexity analysis 

In this subsection, we will briefly anal yze the computa-

ional complexity of the proposed KDM. The complexity of the
endence maximization for cross-modal retrieval, Neurocomputing 
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Fig. 3. MAP vs. varying d on Wikipedia and NUS-WIDE by fixing λ1 and λ2 . 

Fig. 4. Per class MAP on Wikipedia. 
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Table 1 

Statistics of datasets. 

Datasets d 1 d 2 # l abel s # total # training # testing 

Wikipedia 4096 100 10 2866 1173 693 

NUS-WIDE 500 10 0 0 21 8687 5212 3475 
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Fig. 5. Per class MAP on NUS-WIDE. 
ptimizing algorithm mainly comes from calculating eigenvalue

ecomposition on B 1 and B 2 to obtain P 1 and P 2 . In each itera-

ion, the cost for eigen-decomposition is o( 
∑ M 

m =1 d 
3 
m 

) (here M = 2 ).

ssume that the the objective function of KDM converges after t o 
terations, the overall cost for KDM is roughly o(t o 

∑ M 

m =1 d 
3 
m 

) . 

. Experiments 

To test the performance of the proposed KDM for cross-modal

etrieval, experiments were conducted on two real-world datasets.

iven a cross-modal problem, using the iterative algorithm in

lgorithm 1 , we can learn projection matrices on the training set.

fter that, data from different modalities can be projected into a

ommon subspace, where we can measure the relevance of pro-

ected data from each modality. In the testing phase, taking data in

ne modality as a query set, we can retrieve the relevant data from

nother modality. To measure the similarity, we adopt the normal-

zed correlation (NC), which shows the best performance for cross-

odal retrieval as demonstrated in [26] . 

.1. Datasets 

Two benchmark datasets, i.e. Wikipedia [42] and NUS-WIDE [5] ,

re used in our experiment. Table 1 gives the statistical informa-

ion of them and the follow-ups are brief descriptions on them. 

• Wikipedia: This dataset consists of 2866 image-text pairs that

are labeled with 10 semantic classes in total. For each image-

text pair, we extract 4096-dimensional visual features by con-

volutional neural network to represent the image view, and

100-dimensional LDA textual features to represent the text

view. In the experiment, the dataset is partitioned into two

parts, one for training (2173 pairs) and the other for testing

(693 pairs). 

• NUS-WIDE: This dataset is a subset from [5] , including 190,420

image examples totally, each with 21 possible labels. For each

image-text pair, we extract 500-dimensional SIFT BoVW fea-

tures for image and 10 0 0-dimensional text annotations for text.

To reduce the computational complexity, further we sample a

subset with 8687 pairs of image-text. Likewise, the dataset is

divided into two parts, one for training (5212 pairs) and the

other for testing (3475 pairs). 

.2. Evaluation metric 

In the field of information retrieval, Precision, Recall and Mean

verage Precision (MAP) are three commonly used evaluation met-

ics [28] . In our experiments, we mainly adopt MAP to evaluate the

etrieval performance. Given a set of queries, MAP refers to the av-

rage precision (AP) of all queries, while the average precision (AP)

f each query is defined as: 

P = 

1 

R 

n te ∑ 

k =1 

R k 

k 
× re l k , (14) 

here n te list the total number of the testing set, R is the number

f relevant data in the returned query items, R k is the number of

elevant data in the first returned k query items. If the item at rank

 is relevant, rel(k ) = 1 , otherwise rel(k ) = 0 . 
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
.3. Benchmarkapproaches and experimental setup 

The proposed KDM for cross-modal subspace learning is su-

ervised, kernel-based and correlation-based. Due to the sparse

roperty of � 2, 1 -norm, it is sparsity-based in a sense. Conse-

uently, we compare with the following approaches including un-

upervised ones i.e. CCA, KPCA [20] , KCCA [1] and SCCA [13] , to-

ether with supervised ones i.e. CCA-3V [11] , ml-CCA [27] and LCFS

38] . We also compare with the previous version of our method

DM [43] . Besides, Table 2 makes a summary about all the com-

ared approaches, where ‘Y’ means YES, indicating one method be-

ongs to the corresponding ascription and ‘N’ means NO, indicat-

ng one method does not belong to the corresponding ascription.

t should be noted that, the parameters involved in the compared

pproaches are set to their default values as in the corresponding

iteratures. In the following, we will present the specific settings

or the parameters involved in KDM. 
endence maximization for cross-modal retrieval, Neurocomputing 
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Fig. 6. MAP vs. varying λ1 and λ2 on NUS-WIDE. 

Table 2 

Summarization of compared algorithms. 

Methods Unsupervised Supervised Kernel- Correlation- Sparsity- 

based based based 

CCA Y N N Y N 

KPCA Y N Y N N 

KCCA Y N Y Y N 

SCCA Y N N Y Y 

CCA-3V N Y N Y N 

ml-CCA N Y N Y N 

LCFS N Y N N N 

UDM Y N Y Y Y 

KDM N Y Y Y Y 
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λ

It can be observed that the proposed KDM mainly involve three

parameters, two explicit regularization ones λ1 and λ2 , as well

as an implicit one d , where d is the dimension of the shared
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
ubspace. To guarantee that KDM can achieve its optimal perfor-

ance, by setting different values for the three parameters we

erform tests on two datasets. First we fix λ1 and λ2 to decide

he optimal d . Specifically, we tune d from the range of {5, 10,

0, 40, 60, 80} and {50, 100, 150, 20 0, 250, 30 0} on Wikipedia

nd NUS-WIDE, respectively. Fig. 3 displays MAP scores of cross-

odal retrieval versus different d values on two datasets. As can

e seen from Fig. 3 , when d takes the value of 40 and 50 on

ikipedia and NUS-WIDE respectively, KDM can obtain its best

erformance. Consequently, in the following experiments, we set

 = 40 and d = 50 for Wikipedia and NUS-WIDE. Afterwards, we

x d to determine the optimal value of λ1 and λ2 by tuning them

rom { 10 −5 , 10 −4 , 10 −3 , 10 −2 , 10 −1 , 1 , 10 , 10 2 , 10 3 , 10 4 , 10 5 } . Empiri-

ally, we determine λ1 = 10 −3 and λ2 = 10 3 , as well as λ1 = λ2 =
0 −5 on Wikipedia and NUS-WIDE, respectively. In the subsequent

ection, we will give the parameter sensitivity analysis on λ1 and

2 . 
endence maximization for cross-modal retrieval, Neurocomputing 
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Fig. 7. MAP vs. varying λ1 and λ2 on Wikipedia. 
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Table 3 

MAP comparison on Wikipedia. 

Approaches Image as query Text as query Average 

KPCA 0.1983 0.1826 0.1905 

CCA 0.1222 0.1189 0.1206 

KCCA 0.3337 0.3031 0.3184 

SCCA 0.2270 0.1961 0.2116 

CCA-3V 0.4013 0.3672 0.3843 

ml-CCA 0.3634 0.3156 0.3395 

LCFS 0.4198 0.3966 0.4082 

UDM 0.4204 0.4394 0.4299 

KDM 0.4562 0.4785 0.4674 

a  

w  
.4. Results 

According to the above settings, we test the performance of

he proposed KDM on the cross-modal retrieval task. Experimen-

al results in comparison with CCA, kernel-based KPCA and KCCA,

parse CCA and supervised methods CCA-3V, ml-CCA and LCSF,

re displayed in Tables 3 and 4 on Wikipedia and NUS-WIDE, re-

pectively. From the reported results as in both Tables 3 and 4 , we

an observe that the proposed KDM achieves the best performance

mong all the compared approaches, which may benefit from the

ost discriminative features by jointly using semantic information,

he consistency between two types of similarities for samples of

ulti-modal data, i.e, feature-based similarity and semantic-based

imilarity, and the good feature selection from � 2, 1 -norm charac-

erized with sparsity. Besides, it can be seen that CCA-3V, ml-CCA
 t  

Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
nd LCFS have an advantage over CCA, KCCA , KPCA , and SCCA,

hich lies in that the first three utilize the semantic label informa-

ion while the last four not. Overall, supervised subspace learning
endence maximization for cross-modal retrieval, Neurocomputing 

https://doi.org/10.1016/j.neucom.2018.04.073


10 M. Xu et al. / Neurocomputing 0 0 0 (2018) 1–12 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; May 19, 2018;18:51 ] 

Fig. 8. The objective function vs. the number of iteration. 

Table 4 

MAP comparison on NUS-WIDE. 

Approaches Image as query Text as query Average 

KPCA 0.2326 0.2215 0.2171 

CCA 0.2441 0.2356 0.2399 

KCCA 0.2554 0.2451 0.2503 

SCCA 0.2415 0.2145 0.2280 

CCA-3V 0.3126 0.2757 0.2942 

ml-CCA 0.2872 0.2513 0.2693 

LCFS 0.3288 0.2674 0.2981 

UDM 0.2904 0.2498 0.2702 

KDM 0.3452 0.2841 0.3147 
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methods obtain better performance can than unsupervised ones,

which illustrates that using semantic prior knowledge can bene-

fit learning more discriminative feature representations for cross-

modal subspace learning. 

Figs. 4 and 5 show the per-class MAP performance of all sub-

space learning based methods on NUS-WIDE and Wikipedia re-

spectively. As can be seen from the displayed results, compared

with unsupervised ones like CCA, KPCA, KCCA, SCCA and UDM,

supervised methods like CCA-3V, ml-CCA, LCFS and KDM achieve

better results on the per class in most cases, which shows that us-

ing label information can facilitate more discriminative subspace

representations for cross-modal retrieval. While among the super-

vised subspace learning approaches, our proposed KDM performs

the best, one main reason behind this is that KDM not only incor-

porates label information into subspace learning but also exploit

the consistency between feature-similarity and semantic-similarity

of each sample from each modality. Another reason is � 2, 1 -norm

constraint on the projection matrix which enables to select more

discriminative and label-specific features from the raw features of

each modality. 

5.5. Parameter sensitivity analysis 

As formulated in Eq. (5) , two parameters λ1 and λ2 are involved

in the proposed KDM. To show the impacts of them on cross-

modal retrieval, we have carried out experiments on Wikipedia

and NUS-WIDE by tuning these two parameters from the range of

{ 10 −5 , 10 −4 , 10 −3 , 10 −2 , 10 −1 , 1 , 10 , 10 2 , 10 3 , 10 4 , 10 5 } . Experimental

results on two datasets for image query vs. text database and

text query vs. image database tasks are shown in Fig. 6 and

Fig. 7 , respectively. From the two figures, we can observe that the
Please cite this article as: M. Xu et al., Subspace learning by kernel dep

(2018), https://doi.org/10.1016/j.neucom.2018.04.073 
erformance of KDM varies as λ1 and λ2 change. By contrast, the

roposed KDM on Wikipedia is much more sensitive to two pa-

ameters than on NUS-WIDE. While on Wikipedia, the changing

rend of MAP in terms of two retrieval tasks is accord with each

ther. In addition, the proposed KDM on the dataset NUS-WIDE

erforms better when λ2 take the value of 10 −5 . 

.6. Convergence study 

In the preceding part, the convergence behavior of the proposed

lgorithm has been theoretically analyzed. In the following, we will

emonstrate the convergence property experimentally. Specifically,

e test convergence in each iteration by computing the values of

he objective function in Eq. (5 ). The convergence criterion used in

ur test is �t+1 − �t < 10 −6 , where �t is the objective function

alue in the t -th iteration. Fig. 8 displays the relationship between

he objective function and the number of iteration on two datasets

.e. Wikipedia and NUS-WIDE. As can be observed from Fig. 8 , for

ach dataset, the objective function defined as Eq. (5) can quickly

onverge to its maximum within about ten iterations, which right

erifies the theoretical analysis as discussed before and also shows

he efficiency of the designed iterative optimization strategy in

lgorithm 1 . 

. Conclusion 

In this paper, we propose the cross-modal subspace learning

odel via kernel dependence maximization. Unlike most of the ex-

sting correlation-based subspace learning methods, the proposed

DM learns subspace representations for each modality by maxi-

izing the kernel dependence instead of directly maximizing the

eature correlations between multi-modal data. Moreover, KDM

an also preserve the consistency between feature-similarity and

emantic-similarity of samples from each modality. Experimental

esults have demonstrated the effectiveness of the proposed algo-

ithm and show its great competitiveness against the compared

lassic subspace learning based approaches. 
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